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SEcTION |

IN applied statistics one has to use the same set of data for various
kinds of statistical inferences, to test for various types of relations
between the variables which are suggested either through theoretical
implications or previous experience with similar type of data. Different
such statistical tests are not independent in the probability sense and
the levels of significance for each of them individually do not provide.
‘for the corresponding amount of protection against spurious inferences.
The idea of protection level was developed by Tukey for such situations. -
Ghosh (1955) has introduced the notion of simultaneous level of sig-
nificance which denotes the probability of rejecting at least one of the
null hypotheses Hjy, H,, .... etc. when all of them are in fact true.
This idea corresponds to the idea of the simultanedus confidence interval
estimation of all linear functions of a number of parameters developed
by Scheffé (1953) and Roy and Bose and (1953). We shall consider here
simultaneous tests of certain linear hypotheses and the related prob-
lems- of finding simultaneous confidence intervals for groups of para-
meters. All these tests are based on the least square estimates of the
corresponding parameters which has the important property of being
quasi-independent as defined by Ghosh (1955). Two tests T; and T
of hypotheses H, and H,, where H, and H, do not involve any common
parameters, are called quasi-independent when in the test,T; of Hj,
the first and second kinds of error do not involve the parameters of
the hypothesis H, and vice versa.

We shall find here simultaneous confidence ‘intervals for different
groups of parameters in a linear set-up and show that they are shorter
than those obtained by Scheffé’s method. In many problems such
groups of parameters are naturally occurring in the problem and does
pot puf any restriction on the problem. "The computations invelved
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". in the use of these methods are also of the same order as in the use of
Scheﬁ smethod : -

SECTION 2 SIMULTANEOUS TESTS OF LINEAR HYPOTHESES '

ConSIder the linear -model . Ce i
- EQ)=aupt it Gwbe =1, ) (2 1)
: y, ~being 1ndependent normal r.v.’§ with unknown variance o® and

D1 .- Py unknown parameters Let rank (a) =N N, and let 71'1
be estrmable linear functions of the parameters p;. p,,,

mo=lapr+ o - linDe - =1 R)

such that the coefficient vectors (/;, . . ly,) form a- vector space of rank
R< N, Suppose we are interested in the multiple (linear) hypotheses::

CHyim =0 .. .... B Ty = 0

H:w,;,+ dpmets = 0, .._.n,,ﬁ — zk—

bor the simultaneous test of these s’ hypotheses we want that
the first-kind of error, i.e., the simultaneous level of significance is < a
and that the test has good properties agamst certian class of alternatlves
which depénd on experrence and 1nterest of the experimenter.

Let o i . :
'YI “e Ykl; Yk,-l'l e lYk'l.H;’.;'.x. . Yk

1t ol K8

.be the best linear estimates of these parameters obtained by the method
of least squares. We shall sometimeés ‘denote the coefficient vectors
of these linear functions by the same symbol, so that we. have the alter-
natrve notation for the linear function ¥, = (Y, y) where (Y3 y) is the
scalar. product of the vector Y, and the observation vector y. From the.
Markoﬁ"s theorem we have an independent estimate of error variance
TS, say, with n.d. f. which is independent of the parameters py, ..., p,,.

Then it-is obvious, that if the test of the hypothesis H,, is based on the
linéar functrons : . :

7 (Ybn—1+1’ y)s . '-"(Yb;,a y) bn = kl + "" k

~ whose expectatiorns are Ty + + » Ty respectrvely, then 1t will ‘be quasi- -
: mdependent of the:rest of the hypotheses L '
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Let Uy, _4q ... Uy, be ortho-normal vectors forming a basis of
the vector space formed by Y,, 41 ... Ys,. Then (U, ) is a linear
form. in (Y, »)(i,j = b,y +1, ..., b,) and )

E(Uia y) = 2 a"E(Y)', ») = Zam, = ¢, say (2.2
On the hypothesis H,,

ANy Z[(U,,y) E(U, )]

has a y?2 dlStI’lbuthn with k, d.f. The second kind of etror for this
" test of H, shall depend only on the parameters m,,_ i ... m

e
The case when the estimates
Yl “ s Ykl; Yk’l |% S Yki+k2

- belonging to different hypotheses are orthogonal, has been considered
by Ghosh (1955) and later elaborated by Ramachandran (1956).
Ramachandran has further provided tables for the special case of
ky = k, (2 hypotheses). Nair (1948) has studied the very special case .
of ky =k,= ... =k, =1 and provided tables whlle Ramachandran
has elaborated the use of what he calls studentized x2 in this connection.

For convenience we cousider the non-orthogonal case involving
two hypotheses. Ghosh (1955) has shown that in this case there exists
no non-singular transformation by which the linear functions can be
transformed into mutually orthogonal sets.

Let Up... Up; Uggr oo Unany be an orthogonal basis of the

vector space formed by Y; ... Yy, so that Uy ... Uy is a basis of
the vector space formed by the first k; vectors ¥; ... Y, of H;. Let
E(U,,y) = ¢: where ¢;’s are linear functions of @y ... m,; my. .

Thstty and let ¥, be the normalized vector correspondmg to Y, ie.,
¥: = Y./l Y:| where| Y;]|is the norm of the vector ¥; and 7; = m;/| ¥;]|.

For convenience we shall assume that Y, ... Y, are mutually ortho-
- gonal as also Y, 4 ... Yy, but not between the two sets. This may
involve a transformation of the parameter set of the problem which
leaves the problem essentially 1nvar1ant

The relation between U-vectors and y-vectors is expressed by

II: 11’/1) (ﬁ y)(U;) | | 2.3)
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where a (k; X ky) is an orthogonal: matrix, y (k2 X k) is non-singular
and B (k, X k) is non-null, since vectors ?, and Y, are not .mutually
orthogonal, and the row vectors of (B, ) are of V1‘mit length

where
Y1)
Y,= o |ete.
Vs,
It is to be noted that an orthogonal transformation of (2.3) leaves the
* rank of B and orthogonality of o unaltered. ; '

On the basis of (2.3) Ghosh derived 3 dlﬁ‘erent methods of ﬁndmg
confidence regions for the parameters iy ... me: Tp41 - - - Thyotky
Method (@) is essentially the same as that of Scheffé and Roy-Bose,
method (b) gives confidence regions for a; ..., and m 4 ... Tty
separately while method (c) employs a singular transformation of

) (Y) to arrive at sets of linear functions Wthh are mutually ortho-
Ir

gonal. We shall develop a modlﬁed form of method (b) and a new
method (d) and compare them with the Scheffé’s method (@) in respect
of lengths of confidence intervals. It will be shown that the method
(d) invariably gives shorter confidence intervals than method (a).

" Method (a).—Along with the joint test of significance for H; and
H, it also gives the conﬁdence intervals for all linear functions of the
parameters. my ... 7y ; M4y « -« Tem, With a joint confidence co-

cflicient.

From (2.3) after application of Schwartz’s inequality we get
~ ~ K1tk ' .
| (Yo 3) — 7 2 2 [(Uy, 3) — &1 n=1,...k+k
1
Hence )
P (¥py) —#, < S forall n=1, ...,k + kol
Tty ) B
=P, z {(U,») — ¢3°< 8. 2.4
If | |
Pr [ 2{(U1ay) - ¢J}2< 82]

is fixed at 1 — o, then with confidence coefficient 1 — o we get the set
of simultaneous linear intervals:
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(7)) — 8.<#, < (P, 3) + 8 for all n=1, ..., ky + ki
(2.5)

For the joint test of H; and H, we may use

=) Wy

and test against n, S,%/o%; when 82, will be found to be equal to
(ky + ko) Fig, ky42,, no » Sete

If we want to specify also as to which hypothesis out ‘of H; and Hy
is to be accepted (rejected), we may use two test statistics

Z (¥, y)

’

and. -
kx+k2(Y )
n J
T, = Z Coy
2t -
From (2.3) we shall find that if m; =0, ... =744, = 0,
k1tkz o
Tl(n,S,2)< ? (Upy)z
and

k1tk2 . ‘
T2(n|S¢2)< 2 (Uj)y)‘z- (2.6)

Hence statistics T, and T, will provide quasi—independéﬂt tests of
hypotheses H; and H, respectively and the upper bound of simultaneous
significance level will be provided by the distribution of

"1 kz :
(Uh)’) [n, S?

so that the‘ critical limits for T and T, are the same, viz.,
ky + k&,

A= « Fia, Tyt N,
if T; (i=1, 2) > A, we may conclude that H,is reJected and vice
versa.
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Now consider a linear function of #’s say

Katka
~
2 aqmy,
1

+ a function iﬁvolving parameters from both hypotheses. For ﬁhding
"a~confidence- interval for this note that

Var.(V.y)=o2foralli=1,...,k + ks,

and

TR Fatky . -
Var. { X a; (th V= 2at. 0%+ %Z' a; Cov{(¥;, ») (Y, 5)}
. iFi=1

Kitks o~ -
=02 [ J a2+ 3 aa; (Y, Y))] =0 .k say
C iA=L

where (¥, . ¥;) is the scalar product. Then the confidence interval for

kytks
QT
1

is given by

. Rtk a .
Zay(Yo ) =8 Vhk<S XY ai < o (Y 0) + 8 vk 2.7
. ’ 1 . :

If we confine only to contrasts either in my, ..., m, O Tpus, . .»
T4k, alOne, the expression simplifies con‘siderably giving the.confidence

. ok
interval for X [5; say, as
1

! -~ R 2% ) ~ .
LY, y) =321 X 1< ZL (Y, »)+8+/ 212 (2.8)
1 .

" Method (b).—Applying Schwartz’s inequality to the first half of
relation (2.3) we get the confidence region and confidence intervals
from '

% (U0 ) = 412< G o @-9)

* The result given by Ghosh (1955) is true only for the particular case (2.8)

and does not work for the general situation as implied in that paper. It may benoted

that much of the supposed simplicity of method (a) is taken away by this correction,
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From the second half of relation (2.3) after épplying Schwartz’s
inequality we get: .

F Ty - me<Twen et eao

Now we must find constants C; and C, such that the 'probabiliny:

-~

P [2 {(Um J’) ¢n}2< Cla 2 {(Uu J’) ¢}2 2 =1-— a.
(2.11)

Instead of solving this integral Ghosh had suggested the use of
the joint distribution of

%y k1t+ka
23 [(Um y) - ‘Isn]2 and k2+1 [(Um y) - ¢n]2

in evaluating C; and C,. But this gives only an upper bound of the
simultaneous level of significance. Another approximation consists
in using an inequality due to Kimball (1951) which is very simple for
computat1ons for C, and C, will then involve only the consultatlon of
F-tables.

SECTION 3. RELATIVE MERITS

‘The comparison between different methods may be made either
in terms of the volume of confidence regions of #’s or in terms of
lengths of confidence intervals for any standard function of #’s. But,
in fact, we need a comparison in parts, for Group 1 parameters alone
and for Group II parameters alone but not both together; therefore
the overall volume in (k; 4 k,) dimensions will not be suitable. It
can be further seen by the known fact that area of a circle is smaller
than that of a square of a side equal to the diameter.

We shall first consider the exact evaluation of (2.1‘1). Putting

B (U y) — a2

Gy o
T 1,S,*

—

1 Ghosh (1955) had actually given an inequality more conservative than (2.9)
by starting from ™! Y, and normalizing the %, individual components. As is clear,
that transformation is totally unnecessary. In fact that inequality for second group
of parameters is so conservative that method (b) would always be far inferior
to method (a) specially for the contrasts of second group of parameters ar.d the cor-
respondmg test of hypothems
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and ‘
ka ' . ) Y '
2 (U Kytis J’) - ¢e,+s] L

G,=1 e

we have : .

P,[G,< C,, G1+G2\C2]— 1—a.
‘The joint distribution of G; and ‘G, is.
' Gy 12 G" (By-2)/2
+G+ Gy ey

SO that transforming to Z; =Gy and Zy= Gy + ‘G, and asbummg 11m1ts
(0, Al) and (0, ;) for the Z’s we. get -

‘ C(kb ks ;ne) ‘(1

¥z D7, T :
C(k1: kos 1) f | 1(1 +é)2(k+k 29)/2 dz le 1—a ‘(3.1).

Now, the lengths of conﬁdence intervals for linear functions in
Ly sy O Tagts oo vy Moyt would be proportional to 4/, and
Vs fespectively If the distinction. bétween the ﬁrst group of para-
meters and second is just arbitrary we.can put Ay = A, otherwise the
ratio A; /A, may be fixed at ky/k; + k. or any other convement quantlty' ’
“depending on the relative 1mportance of the two groups or a prtor:
knowledge

If &y and ky both are even 1ntegers 3. 1) can be' 51mp11ﬁed by.
expanding (Z; — Z;)®—2¥2 etc., and. we shall get a few incomplete
_B-integrals, so that A; and )\2 can be easily evaluated by using Pearson’s
Tables. But if' A, = A, = A the method reduces to (a) and A becomes
S]mply . . ) . . :

ki + ke

e Fila, tythn, ne = A say. -
ne

The advantage of this method (b) thus lies only in us1ng tw0'
inequalities (for the two groups of parameters) instead of one.
 In general A <A, and A, > A,. :

For comparing with method (a) we note that (2.5) gives the half
length of the confidence intervals for a normahzed linear function of
L OF Mgty « - o> Thyth, 88 O where '

. 80,2 = (kl + kZ) - F;l—(i: Tyta ing * Sez- , o
In (b), taking a normalized linear function of ;, ..., m, say, we get
the half-length as /A Sg? so that M/X; (or My/A;) gives the ratio of -

My o0 0y Tk
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(length)? and iS-tgbuIated below. For n, = oo also, we are givihg same
values but here X’s are replaced by .n,\’s.

TaBLE 1.

Valies of A/A and A/A. a = -05

Con-

stants

a2 2 2 2 4 4 2 2 4 4
By .. 2 2 4 4 2 2 2 4 4 2
e .| 2 12 4 12 12 8 0 % IS

As ..| 385 1.081 9-21 1.500 1-90 2-68 9-49 12.50 15-51 1259
)‘11 ool 24:0 0-713 3-8l 0-697 1-156 2-11 6-25 6-19 9:93 9.87
‘)\2J .| 480 1-426 10-43 2:091 2-30 3-17 12:50 18.57 19.87 14:81

MfNa)| 062 0-86 0-41 0-46  0-61 0:79 0:66 0-49 0:64 ~0-78

Aohof| 1-24 1.82  1.24- 138 121 1.18 1.32 147 128 1-17

It is clear from this that in many cases of practical interest A, and A,
put together will give better results than method (a). There is a ten-
dency that for smaller d.f.’s the advantage in using (b) may be con-
siderable, specially when k,>k;. Even for the case of k;,=k,
the method is generally better. ' o

For n, = oo, the gain in using (b) shown above is the lower bound
of the gain obtained. Actually the gain is more or less stabilized as
n, increases from 12 and so this value can be used as a lower bound.
The computations for n, = co run on similar lines though they are a
little simpler, being based on.Incomplete y-functions.

SECTION 4. METHOD (d)
We had the relation

Yn=:BU1+'y U,
which yielded

' © Rtk C .
| (Pis ) — 100 12< 2 {(Upy) — g2 for alli= 1, . .,k
. 1
“4.1)
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This inequality is conservative for we are not using the fact that rank
B< ky. In fact if ky > ko, rank B< k, and so it is possible to get
a better inequality. '

Supposing‘ then, k; > k, we have

~

Yk,+1 = Bl + ... + By Us, + ixUre1 + .

+ Y1, &, Ukri-kg

..... SR e (4-25

..............................................

. Yitws = Bi1 Ur oo 4 Bror, Us, + Va1 Uppra + -+« -
+ Vkz, ks U"t‘l'k; .

The k5 vectors
ks .
2 BﬂiUi5 n= 1, o .,k2
1

form a vector space whose rank < k,. We transform Uy, ...; Uy, to
another ortho-normal system Uy, ..., Uy’; Ugs's - o> U's, such that
the first k, vectors form a basis of the vector space of

- .
§ IBn(Ui(n = 1’ et k2)-

This assumes that all rows of B are linearly independent and we can

in general use ‘r’ as the number of vectors in the basis enumerated

as Uy, ..., U/. As-can be expressed as linear functions of Uy, .
U,', equations (4.2) may, be rewritten as:

k1
erv :Bni U'i

o~ r . k2
Y= %‘ B1 , i Uj' + 2 Y1, Uk,+;
1

e e 3 4.3)

..................................

N r k2 '
ykl-ch =2 B i Ul + X Y s Unysr
1 1 i .
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Since all Uy, ..., U’,; U “etts oy U’ Wyth, AIE mutually orthogonal
each of unit length, the restrictions on B”’s and y’s are :

2

2 ﬂii’2+2 ywi=1foralli=1,..., k,.
i=1

j=1

Applying Schwartz’s inequality on relations (4.3) we get:

~ T - ko
I (Ykl-f—n: y) - 7~Tk1+n |2< ? [(U'll, y) - ¢il]2 + 2 [(Uk1+j’ y) - ¢k1+j]2

1

forall n=1,...,k, (4.4)
where ¢, = E{(U,/,y)} =a lmear function of # , .. -s Tpy4n,. FOI
the first k; parameters, the inequality is the same as in method (b), i.e.,

| (Yiny) - ;T?l |2 < 2 [(U’i’ y) - ¢1’]2 = ? [(U'i’: ,V) - ¢i']2 ’
1 ! .
n=1,..., k 4.5)
since sum of squares is in-variant under orthogonal transformation.

The optimum procedure in ‘this case would depend upon the
rank of 8, however by putting r = &, we get an upper bound of level q.

Let ‘
kzv a < ’ 19
SO = 1=t 2 () — 1 = Xy
1 2

and
Ey+k2

X (L ¥) — §1F = X2

j=kst1
then we shall use the joint distribution of
X2 X.’2 X2
Gy=—— and G, =2
n, S22 TP SR T n,S,2

here X,2, etc., are all independent X2-distributed variables.

.Gl _

We need two constants A, and A, such that ,
PG+ Ge <)M G+ Ga<X]=1—a. (4.6)

The lengths of 100 (1 — a)/ confidence intervals for any normalized
linear function of &, ..., %, or my ., .. s T4k, Are respectively pro-

_ portional to 4/A; and 4/X,. Since the 'distinction between first group
of parameters and second group may be arbitrary, we put A; = A, = A,
which simplifies” both the ‘computations and the comparlson with

method (a)..
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The joint distribution of G, Gy, Gy is: e

-
G2 Gy UeFy2)2 G/
(1 + Gy + Gy + Gy)tattatne2

C (k2’ _kl - kz: k2’ ne) .

Transforming to Z, = Gy; Z; = G, + G, and Za = Gy + G;, weé get
from (4.6).

A ‘ ' '
yA (k,—2)/2 (Z -7 ')(kl—h2—2)/2 (Z —_ Zl)(,k——z)lz
C (kZa kl k2a k‘) 5 c) f . . (1 + %2 +]ZS _ Zl)(k1+3kz+ne)/2 .

X dZ,dZ, le = 1 —a for Zy>= Z,, Zy= Z, always. (4.7)

In general, the integral I(}, ky, k) on the left-hand side of (4.7) can be
evaluated by successive iteration and quadrature methods; but
for k; and k, as even integers, the integrand can be expanded in powers
of Z,, Z; and Z; and each term can be further reduced on integration
by parts to a double integral which, on 1ntegrat1on by parts again; gives
a few Incomplete B-functions. The computations are lengthy but for
small values of k,, k. which are most useful in practice, they can be
easily done. '

_ It should be noted that this method is some improvement over the
methods (a) and (b) only when ky > k,. .When k; = k, this method
fails and one has to fall back on (@) ar (b) unless something be known
about the reduced rank of B. We give below a lemma to show that
the value of A satlsfymg (4.6) decreases with decrease in the rank of
and attains the minimum value for g = 0. ‘

Lemma.—Let x,2, xs2 and xs® be 3 independently distributed X2-
variables with respective, d.f.’s r, v, — r and vy, then if r is allowed
to vary, the probability of the event [X;? 4 Xp® < A, X124+ X% < 4]
increases as ‘ r’+decreases.

Proof —Since any X, can be expressed as a sum of squares of
“n’ standard normal varlates the event [X;2 4+ X,2 < A, X 24 X32<)]

can be written as:
i

‘[%?x + Bxe<n 3 x +2x¢<A]

o1 o+l

" which implies the event:

[£xe 4 3 wr < 2x¢2+ Fxe <] 1fs<r

s+1 "1+1
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The smallest value of r being zero, the maximum probablhty “will
hold for  the event a

[Z,‘x, < A, Z,‘x </\]

L vt

Hence the result.

Dividing each X by a non-zero prositive quantity, say S,2 the result

- still holds and if S,% has a probability distribution the result will hold

for X,%/S,2, X,%/S,2and X;2/S,> on integrating the probabilities with
respect to S,2 over its whole range. -

‘Now, since
u ’
PRI L,,v)—dn-lz
1 = X
. 02 (')
Saya'

Z’ [(Ul,’y) ¢’L]2

— X2
) o2 (ky—r)
and
Kotk '
P [(U;isy) - #12
k1tl .

a2

— 2
- X(k;})

have the required distributions, we have
P X X < A X P Xy i< A
S Py X 4 Xy <A Xi® 4 Xy 2< 2]

and on dividing by S,%/s? and integrating over 5,2 we get the same in-
equality. Then, corresponding to equation (4. 6) we may say that

P(GY + Gy <) Gy + Gy < A]

. increases as ‘r’ decreases; where dashes denote that the exact rank

r’ is used instead of k..

Table II gives comparative values of A needed in method
(d) when r is assumed to be k, as well as when it is minimum, i.e., 0.
‘In any practical situation the actual value lies between these 2 bounds
The ¢ X’ for orthogonal case (r = 0) has again been chosen to be the
same for both groups of parameters for ease 1n computations and com-
parison, though there are reasons that it should better correspond in.
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TABLE 11

Showmg upper. and lower bounds of )\d as compared with A :

507

. v

J ,Ad

i2

Aofhorth. .. 1-32-.1-:&1 1:30 1-%6 1.25 1:24 141 1-42

Constants ;
I W 4 4 4 8 6 6 6 6 6 .8 /2 2 - 4
2 di2 2 e a2 2 4 4 442 . 24
e & 8 12 6 8 Q2 s 1z 20 16 2 12
.| 9-2¢ 269 150 5453, 3e44 1-00 4-19 2:30 117 1-81 38:5 1.087 100
su77 9496 1:98 4-53 283 1-57 3-50 1.07 1.02 1.44 [24:0 0:713 1-15
: ‘ ' - 1480 1:426 230
North. - ..| 700 2:06 1-15-5-40 2-75 152 2-98 1-62 083 1-32 28-8 0:837 1:36
Ao/ 119 119 1-17 1.22 l-.22 1-21 1.17 115 1-15 1.26 (1-60 1:50 1.65
) EO : - ‘ . 10-80 075 0-83
1.42 1.38 1-33 130

140

the integral

_Wthh simplifies to a few Incomplete B- 1ntegra1s
'k, = k, when method (d) fails we are ‘also’ giving 2 values of A from
" Table I along with the smgle A-value from (4.8) for each k; =k, = k

G(k—z)/z G(ro —2 : B
C(kl’ ka; no) J‘f (1+G1+G T2 _¢G2 4G, = 1 -8

Asin Table I we have taken "k, and k, both as even integers. -
values for odd k; or k, can be obtalned by simple 1nterpolat10n from

Table II.*

* some way to the d f ] of G, and G,: These co:ﬂputations are basee on

]

(4 8)

In the special case

The

There are some important points’to note from the above observa- o

' tlons Firstly the advantage in-using method (d) is nearly always small,

coming to approximately 109 decrease in the. lengths’ of conﬁdence
intervals. Secondly for rank B = 0, i.e., orthogonal, the advantdge in

. using method (d) as compared to (a) is con31derable and is hearly un-

affected by changes in error d.f.’s. Thus we, can specify the approx1- '
mate gain likely to accrue by using method (d). _ This is so even for

kl = k, when method (d) commdes with- (b).

o e

.

S

*If kqis even but not kz, the lntegrals “. 7) and (4. 8) can st111 be exact]yevaluated

by first integrating out G; in (4.7) and- Gz in (4.8) and then'solving the resultmg ,
“double or. smgle integral, ‘ ' L
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If n, is large, say > 30 large sample approximation may be used
for computing A; and this will be based on incomplete y-integrals of
Pearson. Finney (1941) has given some results in this connection for
the case of orthogonal hypotheses.

_If one is not willing to interpolate between pairs (kyk,) upper
and lower*bounds can still be obtained. If k; is odd but k, even, these
are given by A(k;+ 1,ks) and A(k; — 1,k,) respectively. Further
another upper bound can be computed from the consideration that

P, [Gim,) F Gary < A, Gray + Gagy < Al
= P, [Gia, + Goyiy < A G1 (k) Gz(k,) < A
=P, [Giay < A, G5(2k2) <Al

where k,, etc., in brackets () shows d.f,, 61 denotes that it is inde-
pendent of G1 though 1dent1cally dlstrlbuted

Tests of hyporheses efc —From (4.4) and (4. 5) we get

[(Yn,y) #, |2< (G1 + Gy n,S,2 n=1,.. .k
and '

|(Yk1+i:y) - :’.'Tk1+vi|2< (Gy + G3) n,S,2 . i=1,.... ks

As before by considering a linear function of #’s and maximizing
over the linear coefficients, we get the two confidence regions:

(717 v "77701) : (Ym y) —.7Tn]2 (Gl + G‘)) R, S < Cl
- ) (4.9)
(Thprts « - oo Topiy) - Z' [(Yeusr ) — 7] 2 < (Gr + Gy 1,5,2 < C, A
1

For testing H, and H, we gef the same two test statistics, viz.,

k. 2
Py (Yn"y)
1

T1= . i .
NyS,2 . , -
and
e AR
To= 71 i)

naSaz )
and the common critical limit is A, of TableIl, etc. The tests are
obviously quasi-independent and the simultaneous level of significance



SIMULTANEOUS TESTS OF LINEAR HYPOTHESES . “2_09

of the srmultaneous test, i.e. [T1 > ATy > A] is bounded above by

‘a” though it will be nearer to « than ‘in method (a) or (b). Table III
of appendix gives a number of representatrve values for the upper bound
of A, for a = -05. :

For more than two hypotheses the method can be easﬂy generahsed
by the same approach. When k;=k,=... =k, = 1, we get a
special case of this which may be useful in experrments where the main
‘interest is in many single d.f. contrasts as for example factorial experi-
ments. ' ‘

As can be easily seen this method does not requlre any more com-
putations than in method (@). The essential thing is to obtam the

mutually orthogonal vectors Y1, .. Y,u, Y,,ﬁrl, .. Y,m%I This can
be done by Gram-Schmidt method and it will be found that the neces-
sary scalar products can be obtained by writing the normal equatrons
of 2-way classification with unequal number of observations, etc. ' An
example is given below illustrating the type of practical situations where
these .methods may be useful. '

oy e s

SECTION 5 EXAMPLE

The 8 treatments below refer to an experiment conducted at
Rice Research Station, Tirur, in Randomized Block Design. The ldea.:
was to study the effect of direct application of phosphatic manure {0
" paddy or through green manure—crop preceding the- paddy crop..
The treatments were: , . ‘

"~ (A) No manure. : .
(B) 45 1b./acre of P,O; applied at the time of transplantatron
(C) Sunhemp grown without P,O;. but 45 lb facre of P,0;..
transplantatron : P
(D) Sunhemp grown with 45 lb /acre of P2O _ e
(E) Dhaincha grown without P,Oy but 45 Ib. /acre of P205...
transplantion.
(F) Dhaincha grown with 451b.jacre of PZO
'(G) Sasbanja grown wnthout P,O; but’ 45 lb Jacre of P,0O,.
transplantation.

{H) Sasbama grown with 45 1b./acre | of P,0;.

There are obvrously two natural groupings: one of A and B w1th
direct application of P,Og; the other of C.. H where phosphate 1s

147
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given through green manure. The experimenter’s interest is confined
to comparisons within each group (1 and 5 d.f.’s respectively) and one
between the average of the two groups. Thus we have 3 groups of new
parameters:

ey tA‘ — 1g;
(2) 5 contrasts between C ..H; and

(3) 1 contrast of group compariso'ns: 3(ty+tg) — (2 +
T}' ty), where f4, ..., ty represent the effects” of treatments A....H
and carry a restriction 2t = 0.

This is a case of 3 orthogonal hypotheses with respective d.f.’s
as k=35, k, =1, k3 = 1. The analysis of variance model is

6
Yo =p +bta (t, — 1) + X q
. =2
(5 orthogonal contrasts in ¢, ..., ;)

+“7['}_‘(tx+ts)_‘ot(tc+ +tH)]+e

e being the error term, mdependently normally distributed, p being the
general effect and a;, ..., a; known constants taking suitable values
according as a partrcular observation y comes from one treatment or
another. The 5 orthogonal-contrasts may be formed by the help of
orthogonal polynomials though it would be more relevant to take them
as lg— tp, g —Ip, te — tggy o+ tp — tg — ty and 1, + tp — 21— 215
+ te + fH '

Method (a) would have us using a F-test on 7 d.f. for testing the
homogeneity of the 8 treatments and can provide us confidence intervals
for any other contrast in 74, ..., t, apart from those considered above.
But method (b) would give wus substantially low lengths for the
contrasts (1) and (3) considered above which are more important for the
experimenter. This would, of course, increase the length of con-
fidence intervals for the parameters in group (2). In this case, however,
the groups are orthogonal and B =0 and thus method (d) will be
very effective and will give smaller confidence intervals for all
three groups, than method (@). Thus combining the groups
(1) and (3) we get two groups [(1), (3)] and (2), with"2 and 5
parameters respectively, from the last row of Table II, the square of
the lengths of confidence intervals by method (d) will be about 209
smaller than by method (a). To use the method (d) one has to find A, from
Table III (for d-f 5, 2 and values of n, given there), whcreas in method
(@) one uses the F-table with d-f 7 and n,. '
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, ' APPENDIX
TABLE II1

"Showing values of My and n,.); (in brackets) o= *05

N
I,airs\\ 74 4 6 8 10 I2. 30
(£, %2) .\,\
(3, 2) 6-93 325 2.06 | 1.485 | 1-156 | 0-378
‘ (27-72) | (19-50) | (16-48) | (14-85) | (13-87) | (11-34)
(4, 2) 771 360 226 | 1.630 | 1.275 | 0-411
) (31-08) |. (21-60) | (15-08) | (16-30) | (15-30) | (12-33)
5, 2) 8-85 403 | . 253 | 1.816 | 1-411 | 0-442
(35-40) | (24-18) | (20-24) | (18-16) | (16:93) | (13-26)
(6, 2) 9-87 4-53 283 | 2.040 | 1574 | 0-498-
(39-48) | (27-18). " (22-64) | (20-40) | (18-84) | (14-94)
{1, 2) 11-1 511 | 316 | 2-268 | 1.737 | 0-571
(44+4) (30-66) | (25-28) | (22-68) | (20-84) | (17-13)
(8, 2) 12:4 566 | 350 2:501 1929 | 0611
" (49+6) (33-96) | (28-00) | (25-01) .| (23-15) | (18-33)
(5, 4) C12.3 562 3:49 2489 1-924 0-616
| (49-2) .| (33-72) | (27-92) | (24+89) | (23:09) | (18:48)
(6, 4) 12:9 5-82 3.50 | 2561 | 1975 | 0-625
' (51+6) (34-92) | (28-72) | (25-R1) | (23-70) | (18-75)
(7, & 137 | 608 | 375 | 2666 | 2:086 | 0-646
(54:8) (36-48) | (30-00) | (26+66) | (24-79) | (19:38)
(8, 4) 141 6-33 3:94 24804 2-150 0-674
' (56-4) | (37-98) | (31-52) | (28-04) | (25-92) | (20-22).
(8, 6) 17.8 8§14 501 | 3541 | 2705 | 0-844
(71-2) (48-84) | (40-08) | (35-41) | (32:46) | (25:32)

N.B.—For interpolating between two #,-values for any pair (k,, k) it is prefer-
able to use.n .\ rather than A-values, . ’ :



